Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

[(2-Pyridyl)methanol- $\left.\kappa^{2} N, O\right]$ bis(thio-cyanato-кN) manganese(II)

Qihe Gao, ${ }^{\text {a }}$ Qianqian Bao ${ }^{\text {a* }}$ and Rong Rong ${ }^{\text {b }}$

${ }^{\text {a }}$ Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
Correspondence e-mail: chmsunbw@seu.edu.cn

Received 10 August 2010; accepted 26 August 2010

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$; R factor $=0.054 ; ~ w R$ factor $=0.135 ;$ data-to-parameter ratio $=14.5$.

In the title complex, $\left[\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$, the $\mathrm{Mn}^{\mathrm{II}}$ atom shows site symmetry 2 . The distorted octahedral environment of $\mathrm{Mn}^{\mathrm{II}}$ is defined by two N atoms $[\mathrm{Mn}-\mathrm{N}=2.217$ (4) and 2.132 (5) \AA] and one O atom [$\mathrm{Mn}-\mathrm{O} 2.305$ (4) \AA]. There are intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds and intermolecular $\pi-\pi$ stacking interactions between adjacent (2-pyridyl)methanolate ligands [centroid-centroid distance = 3.5569 (7) \AA], leading to a chain structure running along [100].

Related literature

For background to metallacrowns, see: Mezei et al. (2007); Lah \& Pecoraro (1989). For manganese clusters, see: Christou et al. (2000). For 2-(hydroxymethyl)pyridine, see: Shieh et al. (1997). For bond lengths and angles in related structures, see: Ito \& Onaka (2004).

Experimental

Crystal data
$\left[\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{r}=389.35$
Orthorhombic, Pb cn
$a=11.4759$ (12) \AA
$b=8.398$ (1) A
$c=17.9451(18) \AA$

$$
V=1729.5(3) \AA^{3}
$$

$Z=4$
Mo $K \alpha$ radiation
$\mu=1.02 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
$0.48 \times 0.45 \times 0.40 \mathrm{~mm}$

Data collection

Rigaku SCXmini CCD area-
detector diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.641, T_{\text {max }}=0.687$
7935 measured reflections
1521 independent reflections 1214 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.046$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054 \quad 105$ parameters
$w R\left(F^{2}\right)=0.135$
H -atom parameters constrained
$S=1.35$
1521 reflections
$\Delta \rho_{\max }=0.33 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.56 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~S} 1^{\mathrm{i}}$	0.82	2.49	$3.297(4)$	167

Symmetry code: (i) $x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.
Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2365).

References

Christou, G., Gatteschi, D. \& Hendrickson, D. N. (2000). MRS Bull. 25, 66-66. Ito, M. \& Onaka, S. (2004). Inorg. Chim. Acta, 357, 1039-1046. Lah, M. S. \& Pecoraro, V. L. (1989). J. Am. Chem. Soc. 111, 7258-7259. Mezei, G., Zeleski, Z. M. \& Pecoraro, V. L. (2007). Chem. Rev. 107, 4933-5033. Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shieh, S. J., Chou, C. C. \& Lee, C. C. (1997). Angew. Chem. Int. Ed. 36, 56-59.

supplementary materials

[(2-Pyridyl)methanol- $\left.\kappa^{2} N, O\right]$ bis(thiocyanato- κN)manganese(II)

Q. Gao, Q. Bao and R. Rong

Comment

Some metallacrowns show diverse molecular architectures, selective recognition of ions and intramolecular magnetic exchange interactions (Lah \& Pecoraro (1989); Mezei et al.2007). Among all metallacrowns, manganese clusters have been frequently investigated in recent years, because of their behavior in single molecule magnets(SMMs), which show magnetic hysteresis arising from slow magnetization reversal due to a high energy barrier (Christou et al. 2000). Pyridine derivatives with two ortho-substituents have recently been revised as an important supporting ligands of multiple metal-metal bonds and/or linear metal-metal bonded arrays which are composed by more than three metal atoms. 2(hydroxymethyl)pyridine(Hhmp) is one of the preferred achelate ligands, because the alkoxide arm often supports ferromagnetic coupling between the metal atoms. Many nuclear manganese clusters based on hmp- have been obtained. It was clearly revealed that the Hhmp can function as a chelating ligand for a single manganese ion. In order to construct new structures based on manganese ions, we chose 2-(hydroxymethyl)pyridine (Hhmp) as a pyridine ligand (Shieh et al. 1997). Herein, we report a symmetric manganese complex, $\left[\mathrm{Mn}(\mathrm{Hhmp})_{2}(\mathrm{SCN})_{2}\right]$. The compound presents a a $\mathrm{Mn}^{\text {II }}$ center on a two fold axis bisecting the distorted octahedral environment provided by one Hhmp, one SCN- and their symmetry related counterparts. A molecular view of the complex is shown in Fig.1. The $\mathrm{Mn}^{\mathrm{II}}$ center is surrounded by two nitrogens from the $\mathrm{SCN}-$ anions $(\mathrm{Mn}-\mathrm{N} 2: 2.132(5) \AA$), and two nitrogens and two oxygens from the chelating Hhmp ligands (Mn-N1: 2.217 (4), Mn—O1: 2.305 (4) \AA) to form the distorted octahedral geometry. Distances and angles within the coordination environment of $\mathrm{Mn}^{\mathrm{II}}$ are similar to those reported in Ito \& Onaka (2004). Non bonding interactions include an intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bond (Table 1) and a weak aromatic $\mathrm{p} \cdots \mathrm{p}$ stacking linking adjacent bpy ligand rings at ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) and ($1 / 2-\mathrm{x}$, $-1 / 2+y, z$) (centroid-centroid distance: 3.557 (8) \AA). These interactions define a 1D structure running along [100] (Fig.2).

Experimental

All chemicals used (reagent grade) were commercially available. The reaction of $\mathrm{MnCl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Hhmp}, \mathrm{KSCN}$ and triethylamine in a 2:5:5:1 molar ratio in $\mathrm{MeCN} / \mathrm{CH}_{3} \mathrm{CN}(1: 2, v / v)$ gave a dark solution with stirring. The resulting solution was continuously stirred for a moment, and then filtered. The filtrate was slowly evaporated at room temperature over several days, and dark quadrangle crystals suitable for X-ray analysis were obtained.

Refinement

Positional parameters of all H atoms were calculated geometrically.

supplementary materials

Figures

Fig. 1. The molecular structure of the title compound with the atom-numbering scheme and all hydrogen atoms. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code A: 2-x, $-y, 1-z]$

Fig. 2. Crystal packing of the compound (1). Hydrogen bonds are shown as dashed lines.

[(2-Pyridyl)methanol- $\kappa^{2} N, O$ bis(thiocyanato- κN) manganese(II)

Crystal data

$\left[\mathrm{Mn}(\mathrm{NCS})_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}\right)_{2}\right]$
$M_{r}=389.35$
Orthorhombic, $P b c n$
Hall symbol: -P 2n 2ab
$a=11.4759$ (12) \AA
$b=8.398$ (1) \AA
$c=17.9451(18) \AA$
$V=1729.5(3) \AA^{3}$
$Z=4$

Data collection

Rigaku model name? CCD area-detector diffractometer
Radiation source: fine-focus sealed tube graphite
Detector resolution: 8.192 pixels mm^{-1}
φ and ω scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.641, T_{\text {max }}=0.687$
7935 measured reflections
$F(000)=796$
$D_{\mathrm{x}}=1.495 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3027 reflections
$\theta=2.3-25.0^{\circ}$
$\mu=1.02 \mathrm{~mm}^{-1}$
$T=298 \mathrm{~K}$
Prism, dark brown
$0.48 \times 0.45 \times 0.40 \mathrm{~mm}$

1521 independent reflections
1214 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=2.3^{\circ}$
$h=-8 \rightarrow 13$
$k=-8 \rightarrow 9$
$l=-18 \rightarrow 21$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.135$
$S=1.35$

1521 reflections
105 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0123 P)^{2}+5.1205 P\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.56 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Mn1	0.5000	$0.20604(14)$	0.2500	$0.0459(3)$
S1	$0.30922(15)$	$-0.1799(2)$	$0.08535(9)$	$0.0699(5)$
N1	$0.3448(4)$	$0.2711(5)$	$0.3170(2)$	$0.0517(12)$
N2	$0.4118(5)$	$0.0404(6)$	$0.1798(3)$	$0.0635(14)$
O1	$0.5552(4)$	$0.3948(5)$	$0.3363(2)$	$0.0623(11)$
H1	0.6229	0.3775	0.3485	0.093^{*}
C1	$0.4838(5)$	$0.3959(8)$	$0.4006(3)$	$0.0641(17)$
H1A	0.4863	0.5002	0.4238	0.077^{*}
H1B	0.5124	0.3185	0.4363	0.077^{*}
C2	$0.3599(5)$	$0.3560(7)$	$0.3791(3)$	$0.0528(14)$
C3	$0.2673(7)$	$0.4019(8)$	$0.4232(3)$	$0.0710(19)$
H3	0.2802	0.4609	0.4663	0.085^{*}
C4	$0.1568(6)$	$0.3600(9)$	$0.4032(4)$	$0.077(2)$
H4	0.0935	0.3889	0.4326	0.092^{*}
C5	$0.1405(6)$	$0.2744(9)$	$0.3388(4)$	$0.0731(19)$
H5	0.0658	0.2465	0.3234	0.088^{*}
C6	$0.2357(5)$	$0.2308(7)$	$0.2976(3)$	$0.0600(15)$
H6	0.2243	0.1710	0.2546	0.072^{*}

```
C7

Atomic displacement parameters \(\left(\AA^{2}\right)\)
\begin{tabular}{lllllll} 
& \(U^{11}\) & \(U^{22}\) & \(U^{33}\) & \(U^{12}\) & \(U^{13}\) & \(U^{23}\) \\
Mn1 & \(0.0442(6)\) & \(0.0468(6)\) & \(0.0466(6)\) & 0.000 & \(0.0000(5)\) & 0.000 \\
S1 & \(0.0688(10)\) & \(0.0746(11)\) & \(0.0664(10)\) & \(-0.0037(9)\) & \(-0.0120(8)\) & \(-0.0178(9)\) \\
N1 & \(0.053(3)\) & \(0.055(3)\) & \(0.047(3)\) & \(0.005(2)\) & \(0.003(2)\) & \(0.006(2)\) \\
N2 & \(0.061(3)\) & \(0.057(3)\) & \(0.073(3)\) & \(0.002(3)\) & \(-0.010(3)\) & \(-0.012(3)\) \\
O1 & \(0.056(2)\) & \(0.074(3)\) & \(0.057(2)\) & \(-0.006(2)\) & \(-0.003(2)\) & \(-0.009(2)\) \\
C1 & \(0.068(4)\) & \(0.078(4)\) & \(0.046(3)\) & \(0.014(4)\) & \(-0.005(3)\) & \(-0.007(3)\) \\
C2 & \(0.064(4)\) & \(0.055(3)\) & \(0.040(3)\) & \(0.016(3)\) & \(0.001(3)\) & \(0.007(3)\) \\
C3 & \(0.091(5)\) & \(0.076(4)\) & \(0.047(3)\) & \(0.023(4)\) & \(0.007(3)\) & \(0.007(3)\) \\
C4 & \(0.070(5)\) & \(0.094(5)\) & \(0.067(4)\) & \(0.029(4)\) & \(0.024(4)\) & \(0.022(4)\) \\
C5 & \(0.052(4)\) & \(0.090(5)\) & \(0.077(5)\) & \(0.014(4)\) & \(0.007(3)\) & \(0.024(4)\) \\
C6 & \(0.055(4)\) & \(0.066(4)\) & \(0.060(4)\) & \(0.002(3)\) & \(-0.001(3)\) & \(0.011(3)\) \\
C7 & \(0.039(3)\) & \(0.050(3)\) & \(0.052(3)\) & \(0.009(3)\) & \(0.001(3)\) & \(0.004(3)\)
\end{tabular}

Geometric parameters ( \(\AA\), \({ }^{\circ}\) )
\begin{tabular}{|c|c|}
\hline Mn1-N2 & 2.132 (5) \\
\hline \(\mathrm{Mn} 1-\mathrm{N} 2{ }^{\text {i }}\) & 2.132 (5) \\
\hline \(\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}\) & 2.217 (4) \\
\hline \(\mathrm{Mn} 1-\mathrm{N} 1\) & 2.217 (4) \\
\hline Mn1-O1 & 2.305 (4) \\
\hline Mn1-O1 \({ }^{\text {i }}\) & 2.305 (4) \\
\hline S1-C7 & 1.624 (6) \\
\hline N1-C2 & 1.335 (7) \\
\hline N1-C6 & 1.343 (7) \\
\hline N2-C7 & 1.148 (7) \\
\hline O1-C1 & 1.415 (6) \\
\hline \(\mathrm{O} 1-\mathrm{H} 1\) & 0.8200 \\
\hline N2-Mn1-N2 \({ }^{\text {i }}\) & 98.5 (3) \\
\hline \(\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}\) & 102.81 (18) \\
\hline \(\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 1^{\text {i }}\) & 95.73 (19) \\
\hline \(\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 1\) & 95.73 (19) \\
\hline \(\mathrm{N} 2{ }^{\mathrm{i}}\)-Mn1-N1 & 102.81 (18) \\
\hline N1 \({ }^{\text {i }}\)-Mn1-N1 & 151.5 (2) \\
\hline N2-Mn1-O1 & 167.46 (18) \\
\hline \(\mathrm{N} 2{ }^{\mathrm{i}}\)-Mn1-O1 & 85.49 (17) \\
\hline \(\mathrm{N} 1^{\mathrm{i}}\)-Mn1-O1 & 88.50 (15) \\
\hline N1-Mn1-O1 & 71.76 (16) \\
\hline \(\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{O} 1^{\text {i }}\) & 85.49 (17) \\
\hline \(\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1^{\text {i }}\) & 167.46 (18) \\
\hline \(\mathrm{N} 1^{\mathrm{i}}\) - \(\mathrm{Mn} 1-\mathrm{O} 1^{\text {i }}\) & 71.76 (16) \\
\hline \(\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 1^{\text {i }}\) & 88.50 (15) \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(\mathrm{C} 1-\mathrm{C} 2\) & \(1.511(8)\) \\
\(\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}\) & 0.9700 \\
\(\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}\) & 0.9700 \\
\(\mathrm{C} 2-\mathrm{C} 3\) & \(1.379(8)\) \\
\(\mathrm{C} 3-\mathrm{C} 4\) & \(1.365(10)\) \\
\(\mathrm{C} 3-\mathrm{H} 3\) & 0.9300 \\
\(\mathrm{C} 4-\mathrm{C} 5\) & \(1.373(10)\) \\
\(\mathrm{C} 4-\mathrm{H} 4\) & 0.9300 \\
\(\mathrm{C} 5-\mathrm{C} 6\) & \(1.368(8)\) \\
\(\mathrm{C} 5-\mathrm{H} 5\) & 0.9300 \\
\(\mathrm{C} 6-\mathrm{H} 6\) & 0.9300 \\
& \\
\(\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2\) & \(109.6(4)\) \\
\(\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}\) & 109.7 \\
\(\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}\) & 109.7 \\
\(\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}\) & 109.7 \\
\(\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}\) & 109.7 \\
\(\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}\) & 108.2 \\
\(\mathrm{~N} 1-\mathrm{C} 2-\mathrm{C} 3\) & \(121.9(6)\) \\
\(\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1\) & \(117.0(5)\) \\
\(\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1\) & \(121.1(6)\) \\
\(\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2\) & \(119.5(6)\) \\
\(\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3\) & 120.3 \\
\(\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3\) & 120.3 \\
\(\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5\) & \(118.9(6)\) \\
\(\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4\) & 120.5 \\
& \\
\hline
\end{tabular}

\section*{sup-4}
supplementary materials
\begin{tabular}{|c|c|}
\hline \(\mathrm{O} 1-\mathrm{Mnl}-\mathrm{O} 1^{\mathrm{i}}\) & 93.1 (2) \\
\hline \(\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6\) & 118.1 (5) \\
\hline C2-N1-Mn1 & 118.7 (4) \\
\hline C6-N1-Mn1 & 123.2 (4) \\
\hline C7-N2-Mn1 & 177.1 (5) \\
\hline \(\mathrm{C} 1-\mathrm{O} 1-\mathrm{Mn} 1\) & 113.1 (3) \\
\hline \(\mathrm{C} 1-\mathrm{O} 1-\mathrm{H} 1\) & 109.5 \\
\hline \(\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{H} 1\) & 108.5 \\
\hline \(\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 2\) & 168.6 (4) \\
\hline \(\mathrm{N} 2{ }^{\mathrm{i}}\) - \(\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 2\) & 68.5 (4) \\
\hline \(\mathrm{N} 1{ }^{\text {i }}-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 2\) & -60.7 (4) \\
\hline \(\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 2\) & -12.3 (4) \\
\hline \(\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 2\) & -106.0 (4) \\
\hline \(\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 6\) & -12.1 (5) \\
\hline \(\mathrm{N} 2{ }^{\mathrm{i}}\) - \(\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 6\) & -112.3 (4) \\
\hline N1 \({ }^{\text {i }}\) - \(\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 6\) & 118.5 (4) \\
\hline \(\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 6\) & 166.9 (5) \\
\hline O1 \({ }^{\text {i }}\) - \(\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 6\) & 73.2 (4) \\
\hline N2-Mn1-O1-C1 & 30.2 (10) \\
\hline \(\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{C} 1\) & -79.2 (4) \\
\hline \(\mathrm{N} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{C} 1\) & -175.1 (4) \\
\hline \(\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{C} 1\) & 25.9 (4) \\
\hline \(\mathrm{O} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{C} 1\) & 113.3 (4) \\
\hline
\end{tabular}
\begin{tabular}{ll}
\(\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4\) & 120.5 \\
\(\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4\) & \(119.0(7)\) \\
\(\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5\) & 120.5 \\
\(\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5\) & 120.5 \\
\(\mathrm{~N} 1-\mathrm{C} 6-\mathrm{C} 5\) & \(122.6(6)\) \\
\(\mathrm{N} 1-\mathrm{C} 6-\mathrm{H} 6\) & 118.7 \\
\(\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6\) & 118.7 \\
\(\mathrm{~N} 2-\mathrm{C} 7-\mathrm{S} 1\) & \(179.0(5)\) \\
\(\mathrm{Mn} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2\) & \(-34.4(6)\) \\
\(\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3\) & \(0.2(8)\) \\
\(\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3\) & \(179.4(4)\) \\
\(\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1\) & \(178.4(5)\) \\
\(\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1\) & \(-2.3(7)\) \\
\(\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1\) & \(24.8(7)\) \\
\(\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3\) & \(-156.9(5)\) \\
\(\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4\) & \(0.0(9)\) \\
\(\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4\) & \(-178.2(6)\) \\
\(\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5\) & \(-0.8(10)\) \\
\(\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6\) & \(1.4(10)\) \\
\(\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5\) & \(0.5(9)\) \\
\(\mathrm{Mn} 1-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5\) & \(-178.7(5)\) \\
\(\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1\) & \(-1.3(10)\)
\end{tabular}

Symmetry codes: (i) \(-x+1, y,-z+1 / 2\).

Hydrogen-bond geometry ( \(A,{ }^{\circ}\) )
\begin{tabular}{lllll}
\(D-\mathrm{H} \cdots A\) & \(D-\mathrm{H}\) & \(\mathrm{H} \cdots A\) & \(D \cdots A\) & \(D-\mathrm{H} \cdots A\) \\
\(\mathrm{O}-\mathrm{H} 1 \cdots \mathrm{~S} \mathrm{i}^{\mathrm{ii}}\) & 0.82 & 2.49 & \(3.297(4)\) & 167.
\end{tabular}

Symmetry codes: (ii) \(x+1 / 2, y+1 / 2,-z+1 / 2\).
supplementary materials

Fig. 1


Fig. 2
```

